Jun 022019
 

On May 31st, APR Patrons and Monthly Historical Documents program subscribers were sent emails containing links to the May, 2019, rewards. This months set of documents and diagrams included high-rez copies of:

Document: “Manned Lunar Vehicle Design,” a General Electric paper from 1962 describing a direct-landing Apollo concept

Document: “AP-76 Project 1226,” a highly illustrated Republic Aviation report from May 1955 describing their design for the X-15

Diagram: “DNI-27C, VFX Design Study Fixed Wing/Buried Engine,” September 1968 North American Aviation fighter design

CAD Diagram: three-view of the Dandridge Cole/Martin Aircraft “Aldebaran” giant nuclear powered launch vehicle notional concept

 

If this sort of thing is of interest and you’d like to get in on it and make sure you don’t miss any of the forthcoming releases, sign up either for the APR Patreon or the APR Monthly Historical Documents Program.

 

 




All prior “back issues” are available  for purchase by subscribers. Recent months rewards have included:

 Posted by at 11:46 pm
May 012019
 

Almost certainly the most powerful launch vehicle ever given serious consideration and actual design work was Boeing’s Large Multipurpose Launch Vehicle from 1968. Designed under contract to NASA,the LMLV was designed to be very modular, using a core vehicle that was a perfectly serviceable single stage to orbit launcher, with the option of adding upper stages and various numbers of strap-on solid rocket boosters. it was a large vehicle, seemingly in line with the Nova/Post-Saturn vehicles designed only five years before. But the LMLV was quite different in some respects: it was entirely expendable. With no need to even try to recover the core, no mass was expended on recovery systems, or strengthening the structure to withstand splashdown, or making sure the engines could survive many firings with minimal damage. Instead, every ounce was to be shaved off. The result was a vehicle of astounding launch capability.

The basic core was capable of putting a payload of one million pounds into a 100 nautical mile circular orbit. This equaled or exceeded the capability of the majority of the Nova/Post-Saturn designs,and did so without any augmentation. But it was designed for augmentation. up to twelve 260″ diameter solid rocket boosters could be added; without an upper stage, this configuration could orbit 3.5 million pounds.This would result in a vehicle weight 66,257,000 pounds at liftoff, with a takeoff thrust of 108 million pounds. This would be LOUD. But if ten 372″ boosters were used, the payload would increase to 4.2 million pounds. This was many times the payload of the Saturn V; the payloads intended for this vehicle were generally manned interplanetary (typically Mars) spacecraft and the millions of pounds of liquid hydrogen propellant that they needed.

 

   

 Posted by at 6:13 pm
Apr 252019
 

(I thought that I had posted something about this before, but an exhaustive five-second search didn’t pull it up)

In the mid-1960’s the US Air Force became interested in solid rocket motors that you could not only throttle on command but also stop and then start again. Motors like this would, it was assumed, be quite useful for ICBM upper stages, varying the range of the missiles as well as tinkering with the otherwise ballistic – and thus predictable and interceptable – trajectories of the warhead-carrying bus.

The usual accepted wisdom hold that solid rocket motors cannot be stopped once started. This is quite wrong: yo can stop them by flooding them with an inert fluid such as water, but this of course requires a pretty substantial mass of an otherwise useless substance. or you can “blow them out” by suddenly greatly increasing the total throat area. If you can drop the internal pressure by several tens of thousands of PSI per second, the combustion zone will lift off away from the surface of the propellant far enough that the propellant will cease to boil and combust, and the motor will shut down. It can then be restarted by firing off another igniter, similar to the one originally used to get the motor going.

Several US rocket companies responded the the USAF. Shown below are two small Aviation Week articles describing the motors designs put forward. Both operated using an adjustable pintle: basically a plug that *almost* fills the throat. When closed down the throat area is low, and the chamber pressure is high; as the pintle moves away from the throat, the throat area very quickly gets far greater and chamber pressure drops. Done quickly and with full contraction, the combustion should cease; done slowly, with shorter strokes, the throat area will change less drastically and the motor can be throttled up and down. Testing showed that the idea worked as advertised. But the motors had all the performance of a solid rocket with all the cost of a liquid, with all the weight of a forklift added on; it simply wasn’t a practical solution. Storable liquid propellant rockets are more typically used on the upper stages of ICBM for fine trajectory control. Pintle nozzles are, however, often used on solid propellant kinetic kill vehicles.

 

 

 Posted by at 2:25 am
Mar 072019
 

This subject has been mentioned on this blog before (way back in 2008, 2012, and 2013), but here’s a brand-new video covering the subject of the inconel foil insulation that protected the F-1 engines on the Saturn V when they flew. This insulation was rarely seen by the public and made the engines look entirely different from what people were used to, because the insulation was something of a last-minute addition to help counter some severe heating cause by exhaust gas recirculation as well as direct thermal radiation roasting of the central engine.

 Posted by at 2:34 pm
Mar 072019
 

A video where some guys get into the archives of the US Space & Rocket Center in Huntsville, Alabama. On display is a sizable (looks like about 1/50 scale) Space Shuttle, ET and Boosters made from plexiglas. It is a thing of beauty, surely a chore and a half for the model shop back in the day. This is *not* the final Shuttle design; some differences are obvious such as the split cargo bay doors and, while unmentioned in the video, the existence of extended OMS pod fairings, reaching out onto the aft of the cargo bay doors.

Last time I visited the USS&RC in something like 2005 they had a much bigger plexiglas STS model on public display, something like 1/10 scale, along with a gigantic plexiglas Saturn V. Such things are fantastic artifacts, and if you are working on a complex engineering project like this a see-through plexiglass large scale model is terribly helpful. I suspect that such things are only rarely made these days, as computer graphics are a lot easier, cheaper and more readily updatable. But nothing beats a Real Thing. And at least so far, 3D printing is not up to the job of stamping out large-scale transparent models like this. But someday…

 

 

 Posted by at 1:46 pm
Feb 022019
 

On the 29th, APR Patrons and Monthly Historical Documents program subscribers were sent emails containing links to the January, 2019 rewards. This months set of documents and diagrams included high-rez copies of:

Document: “ASTRO A Manned Reusable Spacecraft Concept,” a Douglas Missiles & Space brochure from August, 1962, describing a two-stage Shuttle-like vehicle

Document: “Status update Ramjet Propulsion 1978” a brochure from the Marquardt Company

Document: “Rocket Blitz Form the Moon” an article from the October 23, 1948 issue of “Colliers” magazine describing the use of the Moon as a missile base, with some helpful Bonestell illustrations of Manhattan getting nuked.

Diagram: A large format color scan of the 1970 North American Rockwell PD-157-17-2 HIPAAS V/STOL jet fighter

CAD Diagram: isometric view, Bernal Sphere space habitat

If this sort of thing is of interest and you’d like to get in on it and make sure you don’t miss any of the forthcoming releases, sign up either for the APR Patreon or the APR Monthly Historical Documents Program.

 

 




 Posted by at 3:19 am
Jan 212019
 

Around 1963-64 a fair amount of effort went into the concept of a single-launch space station with artificial gravity. These stations would be launched atop a Saturn V and would deploy either toroidal or radial structures for the crew to inhabit. The design below (probably Lockheed) is reasonably representative of the radial-arm configuration. During launch the three arms would fold down “behind” the station core, and would deploy out 90 degrees once in orbit.

 

 Posted by at 11:08 pm
Dec 242018
 

2018-12 Rewards are now available for downloading for APR Historical Documents subscribers. This month the rewards include:

1: A large document: “Sea Launch and Recovery of Very Large Rocket Vehicles,” a 1962 Aerojet report on the sea Dragon concept

2: “Ryan Aeronautical Company Plane Portraits,” information, photos and three-views of a sizable range of Ryan aircraft, manned and unmanned

3: “Nova,” a blueprint of the NASA “Saturn C-8” launch vehicle with 8 F-1 engines

4: CAD diagrams: Star Raker scrap views

If you are interested in signing up, you can do so either at Patreon or directly through PayPal. Signing up now makes you eligible for rewards starting with the *next* months rewards. The directly-through-PayPal system is new; it would probably be best to sign up after the first of the month.

 Posted by at 7:12 pm
Dec 122018
 

The Shuttle-C of the late 80’s/early 90’s would have carried a whole lot more to orbit than the Shuttle Orbiter, but would not have been quite as capable of precise maneuvering as the Orbiter. Consequently, it might get close to a space station, but it would be unlikely to dock with it unless it was moved into position with secondary orbital maneuvering vehicles or grabbed with manipulator arms. This artwork depicts a Shuttle-C standing off some distance from a space station, with the cargo being shuttled over with an OMV.

The Shuttle-C was described and illustrated in US Launch Vehicle Projects #4.

 

 Posted by at 12:27 am
Dec 042018
 

In the late 1960’s H.H. Koelle of the Technische University Institut Fuer Raumfahrttechnik in Berlin devoted considerable effort to studying a reusable heavy lift launch vehicle. A good, well-illustrated report was put out in 1968 covering the design:

Entwurfskriterien fur groBe wiederverwendbare Tragersysteme (Design Criteria for Large Reusable Space Transportation Systems)

Note that the Neptun was *gigantic.* It was a two-stage ballistically recovered design, unusual in that rather than being circular in cross-section it was hexagonal. The individual propellant tanks were each the size of or bigger than the S-IC first stage of the Saturn V.

 

 

 

A number of payloads were proposed. One was a sub-orbital intercontinental passenger transport, The passenger “capsule” would land separate from the Neptun itself.

One of the more interesting payloads contemplated was a large Orion nuclear pulse vehicle, transported in two pieces (propulsion module in one launch and payload/pulse units in the other). Presumably this would be a NASA Orion hitching a ride on a West German booster; I suspect politics would have negated the likelihood of the West Germans developing a mass production line for nuclear explosives.

 

This fusion-powered interplanetary spacecraft is also a NASA design, dating from the early 1960’s.

Support the APR Patreon to help bring more of this sort of thing to light!

 

patreon-200

 Posted by at 7:27 pm